Limits Day 1 Worksheet (Sections 2.2 and 2.4)

Use the graph to find each limit.

6) Use the graph of the function f to answer the following questions. a) f(1) b) $\lim_{x \to 1} f(x)$

7) Use the graph of f to identify the values of c for which $\lim_{x\to c} f(x)$ does not exist.

8) Sketch the graph of f. Then identify the values of c for which $\lim_{x\to c} f(x)$ does not exist.

9) Sketch a graph of a function f that satisfies the given values. (There are many correct answers.)

 $x \rightarrow 3^+$

Use the graph to determine each limit, and discuss the continuity of the function. 10) a) $\lim f(x)$ b) $\lim f(x)$ c) $\lim_{x\to 3} f(x)$

x→3⁻

c) $\lim_{x\to 4} f(x)$ 11) a) $\lim_{x \to 0} f(x)$ b) $\lim f(x)$ $x \rightarrow 4^+$ $x \rightarrow 4^{-}$

Graph and find each limit.

12) $\lim_{x \to 3^{-}} f(x)$, where $f(x) = \begin{cases} \frac{x+2}{2}, & x \le 3\\ \frac{12-2x}{3}, & x > 3 \end{cases}$

14) Discuss the continuity of the function $f(x) = \frac{1}{x^2 - 4}$.

Find the x-values (if any) at which f is not continuous. Which of the discontinuities are removable? 15) $f(x) = \frac{x}{x^2 - x}$ 16) $f(x) = \frac{x+2}{x^2 - 3x - 10}$

17)
$$f(x) = \begin{cases} x, & x \le 1 \\ x^2, & x > 1 \end{cases}$$
 18) $f(x) = \begin{cases} \frac{1}{2}x+1, & x \le 2 \\ 3-x, & x > 2 \end{cases}$

19) Find the constant a, such that the function is continuous on the entire real line.

$$f(x) = \begin{cases} x^3, & x \le 2\\ ax^2, & x > 2 \end{cases}$$

Describe the interval(s) on which the function is continuous.

Explain why the function has a zero in the given interval. (IVT) 22) $f(x) = \frac{1}{16}x^4 - x^3 + 3$ [1, 2] 23) $f(x) = x^2 - 2 - \cos x$ [0, π]

Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of c guaranteed by the theorem.

24)
$$f(x) = x^2 + x - 1$$
, $[0,5]$, $f(c)=11$
25) $f(x) = \frac{x^2 + x}{x - 1}$, $\left|\frac{5}{2}, 4\right|$, $f(c)=6$