\qquad

Review Chapter 7

NO Calculator!

The area sketched below is the area bounded by $\mathrm{y}=2, y=x^{3}+1$, and $\mathrm{x}=0$. Using the diagram, set up the definite integral that represents the following, but DO NOT calculate.

1) The area described in the graph.
2)
3) The volume of the solid formed by rotating the area about the x-axis.

4)
5) The volume of the solid formed by rotating the area about the y-axis.
6)
7) The volume of the solid formed by rotating the area about the line $x=3$.
8)
9) The volume of the solid with square cross sections that are perpendicular to the x-axis.
10) \qquad

Calculator Allowed! Set up integral and then evaluate in the calculator!
6) Find the area of the region bounded by the graphs of
$f(x)=x^{3}+x^{2}-6 x$ and $g(x)=-x^{2}+2 x$

Integral: \qquad Area: \qquad
7) Find the volume of the solid generated by revolving the region bounded by the graph of $y=x^{3}$ and the line $y=x$, between $x=0$ and $x=1$, about the y-axis.

Integral: \qquad Volume: \qquad
8) Find the volume of the solid formed by revolving the region bounded by the graphs of $y=x^{3}$, $y=0, x=1$ and $x=2$ about the x-axis.

Integral: \qquad Volume: \qquad
9) Let R be the region in the first quadrant whose base is bounded by $f(x)=1+\sin (2 x)$ and $g(x)=e^{\frac{x}{2}}$. The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles with diameters extending from $f(x)$ to $g(x)$. Find the volume of this solid.

Integral: \qquad Volume: \qquad
10. Find the length of the curve $\mathrm{y}=\frac{x^{4}}{8}+\frac{1}{4 x^{2}}$ from $\mathrm{x}=1$ to $\mathrm{x}=2$.

