Name _____

Review Chapter 7

NO Calculator!

The area sketched below is the area bounded by y = 2, $y = x^3 + 1$, and x = 0. Using the diagram, set up the definite integral that represents the following, but **DO NOT** calculate.

1) The area described in the graph.

1) _____
 2) The volume of the solid formed by rotating the area about the x-axis.

2) ______3) The volume of the solid formed by rotating the area about the y-axis.

3) ______4) The volume of the solid formed by rotating the area about the line x=3.

5) _____

Calculator Allowed! Set up integral and then evaluate in the calculat 6) Find the area of the region bounded by the graphs of $f(x) = x^3 + x^2 - 6x$ and $g(x) = -x^2 + 2x$	<u>or!</u>
 Integral:	Area: by the graph of $y = x^3$ and
Integral:	Volume:
8) Find the volume of the solid formed by revolving the region bounded by $y = 0$, $x = 1$ and $x = 2$ about the x-axis.	the graphs of $y = x^3$,
Integral:	Volume: = 1 + sin(2x) and $g(x) = e^{\frac{x}{2}}$. endicular to the x-axis are this solid.
Integral: 10. Find the length of the curve $y = \frac{x^4}{8} + \frac{1}{4x^2}$ from x = 1 to x = 2.	Volume: