MVT, IVT, EVT

1. Let g be a continuous function of the closed interval $-1 \leq x \leq 3$. If $g(-1)=-10$ and $g(3)=6$, which of the following are guaranteed?
(A) $g(0)=0$
(B) $g^{\prime}(c)=0$ for some c in the interval $-1<x<3$
(C) $g^{\prime}(c)=4$ for some c in the interval $-1<x<3$
(D) $g(c)=4$ for some c in the interval $-1<x<3$
(E) $-10 \leq g(c) \leq 6$ for all x between -1 and 3
2. The function h is continuous on the closed interval $[-2,5]$ and differentiable on the open interval $(-2,5)$. If $f(-2)=3$ and $f(5)=-11$, which of the following statements could be false?
(A) There exists a c on the interval $(-2,5)$ such that $f^{\prime}(c)=0$.
(B) There is an absolute maximum value on the interval $[-2,5]$.
(C) There exists a c on the interval $[-2,5]$ such that $f(c) \leq f(x)$ for all x on the interval $[-2,5]$.
(D) There exists a c on the interval $(-2,5)$ such that $f(c)=0$.
(E) There exists a c on the interval $(-2,5)$ such that $f^{\prime}(c)=-2$.
3. Let g be a function that is differentiable over the interval $(2,9)$. Given $g(3)=5$, $g(6)=-2$, and $g(8)=5$, which of the following must be true?
I. $\quad g$ has at least one horizontal tangent line.
II. $\quad g$ has at least 2 zeros.
III. For some c in the interval $(3,6), f^{\prime}(c)=-\frac{7}{3}$.
(A) I only
(B) II only
(C) III only (D) I and II only
(E) I, II, and III
4. If $f(x)=x^{3}+1$, then there exists a number c in the interval $(0,1)$ that satisfies the conclusion of the Mean Value Theorem. Which of the following could be c ?
(A) $-\sqrt{\frac{1}{3}}$ (B) 0
(C) $\sqrt{\frac{1}{3}}$
(D) 1
(E) 2
5. $h(x)$ is a differentiable function that contains the points $(2,-5)$ and $(5,4)$. Which of the following must be true?
(A) $h(x)$ is increasing over the interval $(2,5)$.
(B) $h(x)$ intercepts the x-axis at $\frac{11}{3}$.
(C) $h^{\prime}(c)=0$ for some c in the interval $(-5,4)$.
(D) $h^{\prime}(c)=3$ for some c in $(2,5)$
(E) $h^{\prime}(c)=3$ for all x in $(2,5)$
6. The Mean Value Theorem may be applied to which of the following functions over the interval named?
(A) $f(x)=\tan x$ over $[0, \pi]$
(B) $f(x)=|x|$ over $[-1,1]$
(C) $f(x)=\frac{1}{x}$ over $[1,2]$
(D) $f(x)=\frac{\sin x}{x}$ over $[-\pi, \pi]$
(E) $f(x)=[x]$ over $[1,3]$
