Definition of $e: \left.e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \quad \right\rvert\,$ Definition of absolute value: $|x|=\left\{\begin{aligned} x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{aligned}\right.$

Definition of the derivative:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

Alternative form:

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

Definition of continuity: f is continuous at $x=c$ if and only if

1) $f(c)$ is defined;
2) $\lim _{x \rightarrow c} f(x)$ exists;
3) $\lim _{x \rightarrow c} f(x)=f(c)$.

Average rate of change of $f(x)$ on $[a, b]=\frac{f(b)-f(a)}{b-a}$
Intermediate Value Theorem: If f is continuous on $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c between a and b such that $f(c)=k$.

Rolle's Theorem: If f is continuous on $[a, b]$ and differentiable on (a, b) and if $f(a)=f(b)$, then there is at least one number c on (a, b) such that $f^{\prime}(c)=0$.

Mean Value Theorem: If f is continuous on $[a, b]$ and differentiable on (a, b), then there exists a number c on (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

$$
\left.\begin{array}{l}
\begin{array}{l}
\cos ^{2} x+\sin ^{2} x=1
\end{array} \quad 1+\tan ^{2} x=\sec ^{2} x
\end{array} \begin{array}{l}
1+\cot ^{2} x=\csc ^{2} x \\
\sin (2 x)=2 \sin x \cos x
\end{array} \quad \cos ^{2} x=\frac{1+\cos (2 x)}{2}\right\} \text { needed second semester in BC }
$$

$$
\begin{array}{ll}
\frac{d}{d x}[c]=0 & \frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \\
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) & \frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) &
\end{array}
$$

$$
\begin{array}{ll}
\frac{d}{d x}[\sin u]=\cos u \frac{d u}{d x} & \frac{d}{d x}[\cos u]=-\sin u \frac{d u}{d x} \\
\frac{d}{d x}[\tan u]=\sec ^{2} u \frac{d u}{d x} & \frac{d}{d x}[\cot u]=-\csc ^{2} u \frac{d u}{d x} \\
\frac{d}{d x}[\sec u]=\sec u \tan u \frac{d u}{d x} & \frac{d}{d x}[\csc u]=-\csc u \cot u \frac{d u}{d x} \\
\frac{d}{d x}[\ln u]=\frac{1}{u} \frac{d u}{d x} & \frac{d}{d x}\left[\log _{a} u\right]=\frac{1}{u \ln a} \frac{d u}{d x} \\
\frac{d}{d x}\left[e^{u}\right]=e^{u} \frac{d u}{d x} & \frac{d}{d x}\left[a^{u}\right]=a^{u} \ln a \frac{d u}{d x} \\
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)} &
\end{array}
$$

Definition of a Critical Number:

Let f be defined at c. If $f^{\prime}(c)=0$ or if f^{\prime} is undefined at c, then c is a critical number of f.

Definition of Increasing and Decreasing Functions

A function f is increasing on an interval if for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f(x)_{1}<f\left(x_{2}\right)$.
A function f is decreasing on an interval if for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f(x)_{1}>f\left(x_{2}\right)$.

Test for Increasing and Decreasing Functions

Let f be a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b).

1) If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on $[a, b]$.
2) If $f^{\prime}(x)<0$ for all x in (a, b), then f is decreasing on $[a, b]$.
3) If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on $[a, b]$.

First Derivative Test:

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at $x=c$, then $(c, f(c))$ can be classified as follows:

1) If $f^{\prime}(x)$ changes from negative to positive at $x=c$, then $(c, f(c))$ is a relative or local minimum of f.
2) If $f^{\prime}(x)$ changes from positive to negative at $x=c$, then $(c, f(c))$ is a relative or local maximum of f.

Second Derivative Test:

Let f be a function such that the second derivative of f exists on an open interval containing c.

1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then $(c, f(c))$ is a relative or local minimum of f.
2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then $(c, f(c))$ is a relative or local maximum of f.

Definition of Concavity:

Let f be differentiable on an open interval I. The graph of f is concave upward on I if f^{\prime} is increasing on the interval and concave downward on I if f^{\prime} is decreasing on the interval.

Test for Concavity:

Let f be a function whose second derivative exists on an open interval I.

1) If $f^{\prime \prime}(x)>0$ for all x in the interval I, then the graph of f is concave upward in I.
2) If $f^{\prime \prime}(x)<0$ for all x in the interval I, then the graph of f is concave downward in I.

Definition of an Inflection Point:

A function f has an inflection point at $(c, f(c))$

1) if $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)$ does not exist and
2) if $f^{\prime \prime}$ changes sign from positive to negative or negative to positive at $x=c$
$\underline{\mathbf{O R}}$ if $f^{\prime}(x)$ changes from increasing to decreasing or decreasing to increasing at $x=c$.

Definition of a definite integral: $\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}\right) \cdot\left(\Delta x_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \cdot\left(\Delta x_{k}\right)$

$$
\begin{array}{ll}
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1 & \\
\int \cos u d u=\sin u+C & \int \sin u d u=-\cos u+C \\
\int \sec ^{2} u d u=\tan u+C & \int \csc ^{2} u d u=-\cot u+C \\
\int \sec u \tan u d u=\sec u+C & \int \csc u \cot u d u=-\csc u+C \\
\int \frac{1}{u} d u=\ln |u|+C & \int \cot u d u=\ln |\sin u|+C \\
\int \tan u d u=-\ln |\cos u|+C & \int \csc u d u=-\ln |\csc u+\cot u|+C \\
\int \sec u d u=\ln |\sec u+\tan u|+C & \int a^{u} d u=\frac{a^{u}}{\ln a}+C \\
\int e^{u} d u=e^{u}+C &
\end{array}
$$

First Fundamental Theorem of Calculus: $\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a)$
Second Fundamental Theorem of Calculus: $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$

$$
\text { Chain Rule Version: } \frac{d}{d x} \int_{a}^{g(x)} f(t) d t=f(g(x)) \cdot g^{\prime}(x)
$$

Average value of $f(x)$ on $[a, b]: \quad f_{A V E}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

$$
\begin{array}{ll}
\frac{d}{d x}[\arcsin u]=\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x} & \frac{d}{d x}[\arccos u]=-\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x} \\
\frac{d}{d x}[\arctan u]=\frac{1}{1+u^{2}} \frac{d u}{d x} & \frac{d}{d x}[\operatorname{arccot} u]=-\frac{1}{1+u^{2}} \frac{d u}{d x} \\
\frac{d}{d x}[\operatorname{arcsec} u]=\frac{1}{|u| \sqrt{u^{2}-1}} \frac{d u}{d x} & \frac{d}{d x}[\operatorname{arccsc} u]=-\frac{1}{|u| \sqrt{u^{2}-1}} \\
\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\arcsin \frac{u}{a}+C & \int \frac{d u}{u^{2}+a^{2}}=\frac{1}{a} \arctan \frac{u}{a}+C \\
\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \operatorname{arcsec} \frac{|u|}{a}+C &
\end{array}
$$

Volume by cross sections taken perpendicular to the x-axis: $V=\int_{a}^{b} A(x) d x$,

$$
\text { where } A(x)=\text { area of each cross section }
$$

Volume around a horizontal axis by discs: $V=\pi \int_{a}^{b}(r(x))^{2} d x$
Volume around a horizontal axis by washers: $V=\pi \int_{a}^{b}\left((R(x))^{2}-(r(x))^{2}\right) d x$
Volume around a vertical axis by shells: $V=2 \pi \int_{a}^{b} r(x) h(x) d x \quad$ (not required on the AP test)
If an object moves along a straight line with position function $s(t)$, then its
Velocity is $v(t)=s^{\prime}(t) \quad$ Speed $=|v(t)|$
Acceleration is $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$
Displacement (change in position) from $x=a$ to $x=b$ is Displacement $=\int_{a}^{b} v(t) d t$
Total Distance traveled from $x=a$ to $x=b$ is Total Distance $=\int_{a}^{b}|v(t) d t|$ or Total Distance $=\left|\int_{a}^{c} v(t) d t\right|+\left|\int_{c}^{b} v(t) d t\right|$, where $v(t)$ changes sign at $x=c$.

The speed of the object is increasing when its velocity and acceleration have the same sign.
The speed of the object is decreasing when its velocity and acceleration have opposite signs.

CALCULUS BC ONLY

Differential equation for logistic growth: $\frac{d P}{d t}=k P(L-P)$, where $L=\lim _{t \rightarrow \infty} P(t)$. The population is growing fastest when $P=\frac{1}{2} L$ because this is when $\frac{d^{2} P}{d t^{2}}$ changes from positive to negative (so that this is where the inflection point of the solution curve occurs).

| Integration by parts: $\int u d v=u v-\int v d u$ | Length of arc for functions: $s=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$ |
| :--- | :--- | :--- |

If an object moves along a curve, its
Position vector $=\langle x(t), y(t)\rangle$
Velocity vector $=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$
Acceleration vector $=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle$
Speed (or magnitude of velocity vector) $=|v(t)|=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$
Distance traveled from $t=a$ to $t=b$ (or length of arc) is $s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
In polar curves, $x=r \cos \theta$ and $y=r \sin \theta$
Slope of polar curve: $\frac{d y}{d x}=\frac{r \cos \theta+r^{\prime} \sin \theta}{-r \sin \theta+r^{\prime} \cos \theta}$

Area within a polar curve: $A=\frac{1}{2} \int_{a}^{b} r^{2} d \theta$
If f has n derivatives at $x=c$, then the polynomial

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\frac{f^{\prime \prime \prime}(c)}{3!}(x-c)^{3}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is called the nth Taylor polynomial for \boldsymbol{f} centered at \boldsymbol{c}.

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\ldots=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is called the Taylor series for f centered at \boldsymbol{c}.

Lagrange Error Bound for a Taylor Polynomial (or Taylor's Theorem Remainder):
Taylor's Theorem: If a function f is differentiable through order $n+1$ in an interval containing c, then for each x in the interval, there exists a number z between x and c such that

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\ldots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x)
$$

where $R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}$.

The remainder represents the difference between the function and the polynomial. That is,

$$
\left|R_{n}(x)\right|=\left|f(x)-P_{n}(x)\right| .
$$

One useful consequence of Taylor's Theorem is that $R_{n}(x)=\frac{|x-c|^{n+1}}{(n+1)!} \max \left|f^{(n+1)}(z)\right|$, where $\max \left|f^{(n+1)}(z)\right|$ is the maximum value of $f^{(n+1)}(z)$ between x and c. This gives us a bound for the error. It does not give us the exact value of the error. The bound is called Lagrange's form of the remainder or the Lagrange error bound.

Alternating Series Remainder:

If a series has terms that alternate, decrease in absolute value, and have a limit of 0 (so that the series converges by the Alternating Series Test), then the absolute value of the remainder R_{n} involved in approximating the sum S by S_{n} is less than the first neglected term. That is,

$$
\left|R_{n}\right|=\left|S-S_{n}\right|<a_{n+1} .
$$

Maclaurin series that you must know:

$e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\ldots$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!} \cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\ldots$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!} \cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\ldots$

