\qquad

7.2 Volume: Solids with Known Cross Sections

Volumes of Solids with Known Cross Sections

1) For cross sections of area $A(x)$ taken perpendicular to the x-axis:

$$
\text { Volume }=\int_{a}^{b} A(x) d x
$$

2) For cross sections of area $A(y)$ taken perpendicular to the y-axis:

$$
\text { Volume }=\int_{c}^{d} A(y) d y
$$

1) Find the volume of the solid shown in Figure 7.25 on page 462 . The base of the solid is the region bounded by the lines $f(x)=1-\frac{x}{2}, g(x)=-1+\frac{x}{2}$, and $x=0$. The cross sections perpendicular to the x-axis are equilateral triangles.

2) Find the volume of the solid whose base is bounded by the circle $x^{2}+y^{2}=4$ with semi-circle cross sections that are perpendicular to the x-axis. (Page 466 \#62c)

3) Find the volume of the solid whose base is bounded by $y=x^{3}, y=0$, and $x=1$ with square cross sections that are perpendicular to the y-axis. (Page 466 \#63a)

4) Find the volume of the solid whose base is bounded by $y=4 \sqrt{\sin x}, 0 \leq x \leq \pi$ with equilateral triangle cross sections that are perpendicular to the x-axis.

