\qquad

7.2 Volume: Disk and Washer Methods - day 1 (rotations around an axis)

If a region in the plane is revolved about a line, the resulting solid is a solid of revolution, and the line is called the axis of revolution.

Volume of disk $=($ area of disk $)($ width of disk $)=$

The Disk Method

Horizontal Axis of Revolution
$\mathrm{V}=\pi \int_{a}^{b}[R(x)]^{2} d x$
$R(x)=$ \qquad

Vertical Axis of Revolution

$$
V=\pi \int_{c}^{d}[R(y)]^{2} d y
$$

$$
R(y)=
$$

\qquad

1) Find the volume of the solid formed by revolving the region bounded by the graph of $f(x)=\sqrt{\sin x}$ and the x-axis $(0 \leq x \leq \pi)$ about the x-axis.

2) Find the volume of the solid generated by revolving the region bounded by the graphs of $y=2 x^{2}, y=0$ and $x=2$ about the x-axis.

3) Find the volume of the solid generated by revolving the region bounded by the graphs $x=y^{2}, x=0, y=0$ and $y=1$ about the y-axis.

The Washer Method
Horizontal Axis of Revolution
$V=\pi \int_{a}^{b}[R(x)]^{2} d x-\pi \int_{a}^{b}[r(x)]^{2} d x$
$\mathrm{R}(\mathrm{x})=$ Top - Bottom of Outer Region
$r(x)=$ Top - Bottom of Inner Region

Vertical Axis of Revolution
$V=\pi \int_{c}^{d}[R(y)]^{2} d y-\pi \int_{c}^{d}[r(y)]^{2} d y$
$R(y)=$ Right - Left of Outer Region
$r(y)=$ Right - Left of Inner Region

1) Find the volume of the solid formed by revolving the region bounded by the graphs of $y=\sqrt{x}$ and $y=x^{2}$ about the x-axis.
2) Find the volume of the solid formed by revolving the region bounded by the graphs of $y=x^{2}$ and $y=4 x-x^{2}$ about the x-axis.

3) Find the volume of the solid formed by revolving the region bounded by the graphs of $x=3-y^{2}$ and $x=1$ about the y-axis.

