Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Set up <i>u</i> & <i>dv</i> in the box.
Choose <i>u</i> in the order LIPET (works most of the time)
L=Natural Logarithm
I= Inverse Trig
P= Polynomial
E= Exponential
T= Trigonometric
Find:

и	V
du	dv

**1. $\int x e^{2x} dx$

 $2. \int \ln x \, dx$

**3. $\int x \sec^2 x \, dx$ 4. $\int e^x \cos 6x \, dx$

5. $\int x^3 \ln x \, dx$

 $6. \quad \int x^2 \sin x \, dx$

- 7. $\int_{0}^{1} \tan^{-1} x \, dx$
- 8. Find the area of the region bounded by the curve $y = xe^{-x}$ and the x-axis from x = 0 to x = 3.

The **Tabular method** may be used as a short-cut to repeated integration by parts if u is a power of x (polynomial) and dv is something that can be easily integrated.

+/-	u (& derivative)	dv (& antiderivative)
+		
-		
+		
-		

Integrate by parts using tabular method.

1.
$$\int x^3 \sin(x) dx$$

+/-	u	dv
+		
-		
+		
-		
+		

x

+/-	u	dv
+		
-		
+		
-		

Practice: Integrate

1. $\int x^2 e^{2x} dx$

2. $\int x \sec x \tan x \, dx$

3. $\int \left(\sqrt{x}\ln x\right) dx$

4. $\int t^3 e^t dt$

5. $\int e^x \cos x \, dx$