Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Set up u \& $d v$ in the box.
Choose u in the order LIPET (works most of the time)
L=Natural Logarithm
I= Inverse Trig
P= Polynomial
E= Exponential
T= Trigonometric

Find:

${ }^{* *} 1$. $\int x e^{2 x} d x \quad$ 2. $\int \ln x d x$
**3. $\int x \sec ^{2} x d x$
4. $\int e^{x} \cos 6 x d x$
5. $\int x^{3} \ln x d x$
6. $\int x^{2} \sin x d x$
7. $\int_{0}^{1} \tan ^{-1} x d x$
8. Find the area of the region bounded by the curve $y=x e^{-x}$ and the x-axis from $x=0$ to $x=3$.

The Tabular method may be used as a short-cut to repeated integration by parts if u is a power of x (polynomial) and $d v$ is something that can be easily integrated.

$+/-$	u (\& derivative)	dv (\& antiderivative)
+		
-		
+		
-		

Integrate by parts using tabular method.

1. $\int x^{3} \sin (x) d x$
2. $\int x^{2} e^{x} d x$

$+/-$	\mathbf{u}	$\mathbf{d v}$
+		
-		
+		
-		
+		

$+/-$	\mathbf{u}	$\mathbf{d v}$
+		
-		
+		
-		

Practice: Integrate

1. $\int x^{2} e^{2 x} d x$
2. $\int x \sec x \tan x d x$
3. $\int(\sqrt{x} \ln x) d x$
4. $\int t^{3} e^{t} d t$
5. $\int e^{x} \cos x d x$
