CALCULUS BC WORKSHEET ON EULER'S METHOD

Work the following on notebook paper, showing all steps.

- 1. (a) Given the differential equation $\frac{dy}{dx} = x + 2$ and y(0) = 3. Find an approximation for y(1) by using Euler's method with two equal steps. Sketch your solution.
 - (b) Solve the differential equation $\frac{dy}{dx} = x + 2$ with the initial condition y(0) = 3, and use your solution to find y(1).
 - (c) The error in using Euler's Method is the difference between the approximate value and the exact value. What was the error in your answer? How could you produce a smaller error using Euler's Method?
- 2. Suppose a continuous function f and its derivative f' have values that are given in the following table. Given that f(2) = 5, use Euler's Method with two steps of size $\Delta x = 0.5$ to approximate the value of f(3).

х	2.0	2.5	3.0
f'(x)	0.4	0.6	0.8
f(x)	5		

- 3. Given the differential equation $\frac{dy}{dx} = \frac{1}{x+2}$ and y(0) = 1. Find an approximation of y(1) using Euler's Method with two steps and step size $\Delta x = 0.5$.
- 4. Given the differential equation $\frac{dy}{dx} = x + y$ and y(1) = 3. Find an approximation of y(2) using Euler's Method with two equal steps.
- 5. The curve passing through (2, 0) satisfies the differential equation $\frac{dy}{dx} = 4x + y$. Find an approximation to y(3) using Euler's Method with two equal steps.
- 6. Assume that f and f' have the values given in the table. Use Euler's Method with two equal steps to approximate the value of f(4.4).

x	4	4.2	4.4
f'(x)	-0.5	-0.3	-0.1
f(x)	2		

TURN->>>

X	f'(x)
-2	-0.8
-1.5	-0.5
-1	-0.2
- 0.5	0.4
0	0.9
0.5	1.6
1	2.2
1.5	3
2	3.7

- 8. Let y = f(x) be the particular solution to the differential equation $\frac{dy}{dx} = x + 2y$ with the initial condition f(0) = 1. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate f(-0.6).
- 9. (2005 BC 4)

Consider the differential equation $\frac{dy}{dx} = 2x - y$.

(a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and sketch the solution curve that passes through the point (0, 1).

- (b) The solution curve that passes through the point (0, 1) has a local minimum at $x = \ln\left(\frac{3}{2}\right)$. What is the y-coordinate of this local minimum?
- (c) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(0) = 1. Use Euler's method, starting at x = 0 with two steps of equal size, to approximate f(-0.4). Show the work that leads to your answer.
- (d) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Determine whether the approximation found in part (c) is less than or greater than f(-0.4). Explain your reasoning.
- 10. (Modified version of 2009 BC 4)

Consider the differential equation $\frac{dy}{dx} = 6x^2 - x^2y$. Let y = f(x) be the particular solution to the given differential equation with the initial condition f(-1) = 2..

- (a) Use Euler's method with two steps of equal size, starting at x = -1, to approximate f(0). Show the work that leads to your answer.
- (b) Find the particular solution y = f(x) to the differential equation with the initial condition f(-1) = 2.