Cumulative Review Multiple Choice

(Most questions are 2013-2014 AP-like)

- 1. $\lim_{x \to 3} \frac{x^2 + x 12}{x^2 9}$
 - (A) 0
 - (B) 1
 - (C) $\frac{7}{6}$
 - (D) $\frac{4}{3}$
 - (E) does not exist

- 2. $\int_{3}^{x} (4t^2 + 3) dt$
 - (A) 8x + 36
 - (B) $4x^2 + 3$
 - (C) $4x^2 + 36$
 - (D) $\frac{4}{3}x^3 + 3x$
 - (E) $\frac{4}{3}x^3 + 3x 45$

- 3. A particle moving along the x axis has velocity given by $v(t) = \cos(3t)$ at time t. If the particle is at x = 5 when t = 0, what is the position of the particle when $t = \frac{\pi}{2}$?
 - (A) -3
 - (B) $-\frac{1}{3}$
 - (C) 0
 - (D) 4
 - (E) $\frac{14}{3}$
- 4. The function y = h(x) is differentiable and decreasing for all real numbers. On what intervals is the function $y = h(3x^2 4x)$ increasing?
 - (A) $\left(-\infty,\frac{2}{3}\right)$
 - (B) $\left(-\infty, \frac{4}{3}\right)$
 - (C) $\left(0,\frac{2}{3}\right)$
 - (D) $\left(0, \frac{4}{3}\right)$
 - (E) $\left(\frac{2}{3},\infty\right)$

- 5. If $\cos\left(\frac{1}{x^2+1}\right)$ is an antiderivative for f(x), then $\int_1^3 f(x) dx =$
 - (A) -.380
 - (B) -.117
 - (C) .117
 - (D) .380
 - (E) 1.873
- 6. Given that f and g are continuous functions such that $\int_0^5 f(x) dx = 7$, $\int_2^5 f(x) dx = 4$, and $\int_2^0 g(x) dx = -5$, what is the value of $\int_0^2 (3f(x) \frac{1}{2}g(x)) dx$?
 - (A) $\frac{13}{2}$
 - (B) $\frac{23}{2}$
 - (C) 17
 - (D) 19
 - (E) $\frac{49}{2}$

- 7. Let h be the function defined by $h(x) = \int_0^x (t^3 \frac{9}{2}t^2 + 6t) dt$. Determine the intervals on which the graph of y = h(x) is concave up.
 - (A) $(-\infty,0)$ only
 - (B) $(-\infty,1)\cup(2,\infty)$
 - (C) $(0,\infty)$ only
 - (D) (1, 2)
 - (E) $(2, \infty)$ only
- 8. Which of the following definite integrals has the same value as $\int_{1}^{2} \frac{1}{3-x} dx$?
 - (A) $-3\int_2^1 \frac{1}{u} du$
 - (B) $-\int_1^2 \frac{1}{u} du$
 - (C) $\int_{2}^{1} \frac{1}{u} du$
 - (D) $\frac{1}{3}\int_{1}^{2}\frac{1}{u}du$
 - (E) $\int_{1}^{2} \frac{1}{u} du$

- $9. \quad \int \frac{x}{x^2 4} dx =$
 - (A) $\frac{-1}{4(x^2-4)^2} + C$
 - (B) $\frac{1}{2(x^2-4)}+C$
 - (C) $\frac{1}{2} \ln \left| x^2 4 \right| + C$
 - (D) $2 \ln |x^2 4| + C$
 - (E) $\frac{1}{2}\arctan\left(\frac{x}{2}\right) + C$

- 10. The graph of the piecewise linear function f is shown in the figure above. If $g(x) = \int_{-2}^{x} f(t) dt$, which of the following values is greatest?
 - (A) g(-3)
 - (B) g(-2)
 - (C) g(0)
 - (D) g(1)
 - (E) g(2)

- 11. The function g is defined by $g(x) = \cos x + \sin x$ for $0 \le x \le 2\pi$. What is the x coordinate of the point of inflection where the graph of g changes from concave up to concave down?
 - (A) $\frac{\pi}{4}$
 - (B) $\frac{3\pi}{4}$
 - (C) $\frac{5\pi}{4}$
 - (D) $\frac{7\pi}{4}$
 - (E) $\frac{9\pi}{4}$
- 12. The function g is continuous and $\int_0^{19} g(u) du = 12$. Determine the value of $\int_2^3 x^2 g(x^3 8) dx$.
 - (A) $\frac{1}{3}$
 - (B) 4
 - (C) 8
 - (D) 12
 - (E) 36

- 13. The temperature of a room, in degrees Fahrenheit, is modeled by H, a differentiable function of the number of minutes after the thermostat is adjusted. Of the following, which is the best interpretation of H'(5) = 2?
 - (A) The temperature of the room is 2 degrees Fahrenheit, 5 minutes after the thermostat is adjusted.
 - (B) The temperature of the room increases by 2 degrees Fahrenheit during the first 5 minutes after the thermostat is adjusted.
 - (C) The temperature of the room is increasing at a constant rate of $\frac{2}{5}$ degree Fahrenheit per minute.
 - (D) The temperature of the room is increasing at a rate of 2 degrees Fahrenheit per minute, 5 minutes after the thermostat is adjusted.

Leaming Objectives	Essential Knowledge	Mathematical Practices for AP Calculus
LO 2.3A: Interpret the meaning of a derivative	EK 2.3A1: The unit for $f'(x)$ is the unit for f divided by the unit for x .	MPAC 2: Connecting concepts
within a problem.	The state of the s	MPAC 5: Building
LO 2.3D: Solve problems involving rates of change in applied contexts.	EK 2.3D1: The derivative can be used to express information about rates of change in applied contexts.	notational fluency

- 14. A function f is continuous on the closed interval [2,5] with f(2) = 17 and f(5) = 17. Which of the following additional conditions guarantees that there is a number c in the open interval (2,5) such that f'(c) = 0?
 - (A) No additional conditions are necessary.
 - (B) f has a relative extremum on the open interval (2, 5).
 - (C) f is differentiable on the open interval (2, 5).
 - (D) $\int_{1}^{5} f(x) dx$ exists.

Leaming Objective	Essential Knowledge	Mathematical Practices for AP Calculus
LO 2.4A: Apply the Mean Value Theorem to describe the behavior of a function over an interval.	EK 2.4A1: If a function f is continuous over the interval $\{a,b\}$ and differentiable over the interval $\{a,b\}$, the Mean Value Theorem guarantees a point within that open interval where the instantaneous rate of change equals the average rate of change over the interval.	MPAC 1: Reasoning with definitions and theorems MPAC 5: Building notational fluency

- 15. A rain barrel collects water off the roof of a house during three hours of heavy rainfall. The height of the water in the barrel increases at the rate of $r(t) = 4t^3e^{-1.5t}$ feet per hour, where t is the time in hours since the rain began. At time t = 1 hour, the height of the water is 0.75 foot. What is the height of the water in the barrel at time t = 2 hours?
 - (A) 1.361 ft
 - (B) 1.500 ft
 - (C) 1.672 ft
 - (D) 2.111 ft

Leaming Objectives	Essential Knowledge	Mathematical Practices for AP Calculus
LO 3.4E: Use the definite integral to solve problems in various contexts.	EK 3.4E1: The definite integral can be used to express information about accumulation and net change in many applied contexts.	MPAC 2: Connecting concepts MPAC 3: Implementing algebraic/computational processes
LO 3.3B(b): Evaluate definite integrals.	EK 3.382: If f is continuous on the interval $[a,b]$ and F is an antiderivative of f , then $\int_a^b f(x) dx = F(b) - F(a)$.	