9.10 Taylor's Theorem (Lagrange Error Bound)

If function f is differentiable through order n+1 in an interval containing the center x=c, then for each x=a in the interval, there exists a number x=z between a & c such that:

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(a - c) + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + R_n(x)$$

where the remainder $R_n(x)$ is given by $R_n(x) = \left| \frac{|f^{(n+1)}(z)|}{(n+1)!} (x-c)^{n+1} \right|$, called the **Lagrange Remainder, or Lagrange Error Bound.**

When applying Taylor's Theorem, we would not expect to be able to find the exact value of z. Rather, we are merely interested in a "safe" upper bound (max value) for $|f^{(n+1)}(z)|$ from which we will be able to tell how large the remainder $R_n(x)$ is.

You need 4 things: f(x) = ? c = ? x = ? n+1 = ?

- 1. (calculator) Let *f* be a function with 5 derivatives on the interval [2, 3]. Assume that $f^{(5)}(z) < .2$ for all x in [2, 3] & that a fourth-degree Taylor polynomial, $P_4(x)$, for *f* at c = 2 is used to estimate f(3).
 - a. How accurate is this approximation? Give 4 decimal places.
 - b. Suppose that $P_4(3) = 1.763$. Use your answer from (a) to find an interval in which f(3) must reside.
 - c. Could *f* (3) equal 1.761? Explain.
- 2. (calculator) The function *f* has derivative of all orders for all real numbers x. Assume that f(2) = 6, f'(2) = 4, f''(2) = -7, f'''(2) = 8.
 - a. Write the 3^{rd} degree Taylor polynomial for f about x = 2 and use it to approximate f(2.3). Give three decimal places.
 - b. The 4th derivative of *f* satisfies the inequality $|f^4(x)| \le 9$ for all x in the closed interval [2, 2.3]. Use the Lagrange error bound on the approximation of *f*(2.3) found in part (a) to find an interval [a, b] such that $a \le f(2.3) \le b$. Give three decimal places.
 - c. Based on the information above, could *f*(*2.3*) equal 6.922? Explain.

9.10 Taylor's Theorem (Lagrange Error Bound)

If function f is differentiable through order n+1 in an interval containing the center x=c, then for each x=a in the interval, there exists a number x=z between a & c such that:

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c) + \dots + \frac{f^{(n)}(c)}{n!}(x - c)^n + R_n(x)$$

where the remainder $R_n(x)$ is given by $R_n(x) = \left| \frac{|f^{(n+1)}(z)|}{(n+1)!} (a-c)^{n+1} \right|$, called the **Lagrange Remainder, or Lagrange Error Bound.** When applying Taylor's Theorem, we would not expect to be able to find the exact value of z. Rather, we are merely interested in a "safe"

upper bound (max value) for $|f^{(n+1)}(z)|$ from which we will be able to tell how large the remainder $R_n(x)$ is.

You need 4 things: f(x) = ? c = ? x = ? n+1 = ?

1. (calculator) Let f be a function with 5 derivatives on the interval [2, 3]. Assume that $f^{(5)}(z) < .2$ for all x in [2, 3] & that a fourth-degree Taylor polynomial, $P_4(x)$, for f at c = 2 is used to estimate f(3).

- d. How accurate is this approximation? Give 4 decimal places.
- e. Suppose that $P_4(3) = 1.763$. Use your answer from (a) to find an interval in which f(3) must reside.
- f. Could *f* (3) equal 1.761? Explain.

2. (calculator) The function *f* has derivative of all orders for all real numbers x. Assume that f(2) = 6, f'(2) = 4, f''(2) = -7, f'''(2) = 8.

- d. Write the 3^{rd} degree Taylor polynomial for f about x = 2 and use it to approximate f(2.3). Give three decimal places.
- e. The 4th derivative of *f* satisfies the inequality $|f^4(x)| \le 9$ for all x in the closed interval [2, 2.3]. Use the Lagrange error bound on the approximation of *f*(2.3) found in part (a) to find an interval [a, b] such that $a \le f(2.3) \le b$. Give three decimal places.
- f. Based on the information above, could f(2.3) equal 6.922? Explain.