Name

3.6 Inverse Functions NOTES

Function f(x) = x + 3 can be represented by a set of ordered pairs.

f: {(1,4), (2, 5), (3, 6), (4, 7)}

By interchanging the first and second coordinates of each ordered pair, you can form the inverse function of f.

f⁻¹:

The domain of f = the _____ of f^{-1} .

The range of f = the _____ of f^{-1} .

The functions f and f^{-1} have the effect of "undoing" each other.

Explain how to "undo" each of the following functions. Then write the inverse function of f.

1) f(x) = x - 5 2) $f(x) = \frac{x}{2}$ 3) f(x) = 3x + 2 4) $f(x) = x^3$

Definition of Inverse Functions

A function g is the inverse function of the function f if f(g(x)) = x for each x in the domain of g and g(f(x)) = x for each x in the domain of f.

5) Show that $f(x) = 2x^3 - 1$ and $g(x) = \sqrt[3]{\frac{x+1}{2}}$ are inverses of each other.

The Existence of an Inverse Function

1) A function has an inverse function if and only if it is one-to-one (passes the Horizontal Line Test).

2) If f is strictly monotonic on its entire domain (either increases or decreases on the entire domain), then it is one-to-one and therefore has an inverse function.

Guidelines for Finding an Inverse Function

1) Use the **HLT** to determine whether the function given by y = f(x) has an inverse function.

2) Interchange x and y.

- 3) Solve the equation for y. The resulting equation is $y = f^{-1}(x)$. 4) Define the domain of f^{-1} to be the range of f.

6) Find the inverse function of $f(x) = \sqrt{2x-3}$.

7) Use the derivative to determine whether the function $f(x) = x^3 - 6x^2 + 12x$ is strictly monotonic on its entire domain and therefore has an inverse function.

Derivative of an Inverse Function 8) Consider the function $f(x) = x^3$.

Calculate the <u>slope</u> of f at (1, 1), (2, 8), and (3, 27).

Find the inverse of f(x) (name the inverse g(x)).

Calculate the <u>slope</u> of g at (1, 1), (8, 2) and (27, 3).

What do you observe?

Steps to find the derivative of an inverse function (g(x)) at a point (a, b):

1) Make an f and $g = f^{-1}$ column on your paper.

- 2) Define the points of f and g.
- 3) In the f column, write the function f(x).
- 4) Find the derivative of f(x).
- 5) Find the slope of f at its defined point.

6) Find the slope of g at its defined point, by taking the reciprocal of the slope of f.

9) Let *f* be the function defined by $f(x) = \sqrt{x-4}$. If $g(x) = f^{-1}(x)$ and g(1) = 5, what is the value of g'(1)?

10) Let *f* be the function defined by $f(x) = x^3 + 2x - 1$. If $g(x) = f^{-1}(x)$ and g(2) = 1, what is the value of g'(2)?

11) Let *f* be the function defined by $f(x) = \frac{x+3}{x-5}$. If $g(x) = f^{-1}(x)$ and g(-7) = 4, what is the value of g'(-7)?