\qquad

3.6 Inverse Functions NOTES

Function $f(x)=x+3$ can be represented by a set of ordered pairs.

$$
f:\{(1,4),(2,5),(3,6),(4,7)\}
$$

By interchanging the first and second coordinates of each ordered pair, you can form the inverse function of f.

$$
\mathrm{f}^{-1}:
$$

The domain of $f=$ the \qquad of f^{-1}.

The range of $f=$ the \qquad of f^{1}.

The functions f and f^{-1} have the effect of "undoing" each other.
Explain how to "undo" each of the following functions. Then write the inverse function of f.

1) $f(x)=x-5$
2) $f(x)=\frac{x}{2}$
3) $f(x)=3 x+2$
4) $f(x)=x^{3}$

Definition of Inverse Functions
A function g is the inverse function of the function f if $f(g(x))=x$ for each x in the domain of g and $\mathbf{g}(\mathbf{f}(\mathbf{x}))=\mathbf{x}$ for each x in the domain of f .
5) Show that $f(x)=2 x^{3}-1$ and $g(x)=\sqrt[3]{\frac{x+1}{2}}$ are inverses of each other.

The Existence of an Inverse Function

1) A function has an inverse function if and only if it is one-to-one (passes the Horizontal Line Test).
2) If f is strictly monotonic on its entire domain (either increases or decreases on the entire domain), then it is one-to-one and therefore has an inverse function.

Guidelines for Finding an Inverse Function

1) Use the HLT to determine whether the function given by $y=f(x)$ has an inverse function.
2) Interchange x and y.
3) Solve the equation for y. The resulting equation is $y=f^{-1}(x)$.
4) Define the domain of f^{-1} to be the range of f.
5) Find the inverse function of $f(x)=\sqrt{2 x-3}$.
6) Use the derivative to determine whether the function $f(x)=x^{3}-6 x^{2}+12 x$ is strictly monotonic on its entire domain and therefore has an inverse function.

Derivative of an Inverse Function
8) Consider the function $f(x)=x^{3}$.

Calculate the slope of f at $(1,1),(2,8)$, and $(3,27)$.

Find the inverse of $f(x)$ (name the inverse $g(x)$).
Calculate the slope of g at $(1,1),(8,2)$ and $(27,3)$.

What do you observe?

Steps to find the derivative of an inverse function $(g(x))$ at a point (a, b) :

1) Make an f and $g=f^{-1}$ column on your paper.
2) Define the points of f and g.
3) In the f column, write the function $f(x)$.
4) Find the derivative of $f(x)$.
5) Find the slope of f at its defined point.

6) Find the slope of g at its defined point, by taking the reciprocal of the slope of f.
9) Let f be the function defined $\operatorname{by} f(x)=\sqrt{x-4}$. If $g(x)=f^{-1}(x)$ and $g(1)=5$, what is the value of $g^{\prime}(1)$?
10) Let f be the function defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+2 \mathrm{x}-1$. If $g(x)=f^{-1}(x)$ and $g(2)=1$, what is the value of $g^{\prime}(2) ?$
11) Let f be the function defined by $f(x)=\frac{x+3}{x-5}$. If $g(x)=f^{-1}(x)$ and $g(-7)=4$, what is the value of $g^{\prime}(-7)$?

