\qquad

3.1 The Derivative and the Tangent Line Problem

Slope
$f(x)=2 x+3$

$$
f(x)=x^{2}+2
$$

Slope of a Tangent Line
$\mathrm{m}_{\mathrm{tan}}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$

1) Find the slopes of the tangent lines to the graph of $f(x)=x^{2}+1$ at the points $(0,1)$ and ($-1,2$).

Limit Definition of a Derivative
$f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x} \quad$ or $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
The derivative of a function of x is also a function of x. This "new" function gives the slope of the tangent line to the graph of f at the point ($x, f(x)$), provided that the graph has a tangent line at this point.

The process of finding the derivative of a function is called differentiation. A function is differentiable at x if its derivative exists at x .
$f^{\prime}(x)$ is read " prime of x ".

Notations for derivative: $f^{\prime}(x)$

$$
y^{\prime} \quad \frac{d y}{d x} \quad \frac{d}{d x}[f(x)]
$$

2) Find the derivative of $f(x)=x^{2}+2 x$ using the limit definition of a derivative.
3) $f(x)=2 x^{2}-3$
a) Find the derivative of $f(x)$ using the limit definition of a derivative.
b) Find the slope of $f(x)$ at the point $(1,2)$.
c) Find the equation of the tangent line to the graph of f at the point $(1,2)$.
4) What is $f(x)$? (In other words, what function is this expression finding the derivative of?)
a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{[(x+h)+2]-(x+2)}{h}$
b) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}+5\right]-\left(3 x^{2}+5\right)}{h}$
c) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left[2(x+h)^{3}-3(x+h)+7\right]-\left(2 x^{3}-3 x+7\right)}{h}$
d) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{[5 \sqrt{x+h}-3]-(5 \sqrt{x}-3)}{h}$

Alternative Form of Derivative (used to find the slope at a specific x-value)

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

5) Find the slope of $f(x)=x^{2}+3$ at the point $(2,7)$ using the alternative form of a derivative. Then write the equation of the tangent line at that point.
6) What would this equation $f^{\prime}(5)=\lim _{x \rightarrow 5} \frac{\left(3 x^{2}-2 x+1\right)-66}{x-5}$ be used to find?

Differentiability and Continuity

1) If a function is differentiable at $x=c$, then it is continuous at $x=c$. So, differentiability implies continuity.
2) It is possible for a function to be continuous at $x=c$ and not be differentiable at $x=c$. So, continuity does not imply differentiability.

Graph with a smooth turn.

Sketch the graph of f^{\prime}.
7)

9)

Graph with a sharp turn.

8)

10)

